megatron.model.language_model.TransformerLanguageModel#
- class megatron.model.language_model.TransformerLanguageModel(init_method: Callable, output_layer_init_method, encoder_attn_mask_type, num_tokentypes=0, add_encoder=True, add_decoder=False, decoder_attn_mask_type=AttnMaskType.causal, add_pooler=False, pre_process=True, post_process=True, args=None, model_type=None)#
Bases:
MegatronModule
Transformer language model.
- Parameters:
transformer_hparams – transformer hyperparameters
vocab_size – vocabulary size
max_sequence_length – maximum size of sequence. This is used for positional embedding
embedding_dropout_prob – dropout probability for embeddings
num_tokentypes – size of the token-type embeddings. 0 value will ignore this embedding
- forward(enc_input_ids, enc_position_ids, enc_attn_mask, dec_input_ids=None, dec_position_ids=None, dec_attn_mask=None, enc_dec_attn_mask=None, tokentype_ids=None, inference_params=None, pooling_sequence_index=0, enc_hidden_states=None, output_enc_hidden=False)#
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- load_state_dict(state_dict, strict=True)#
Customized load.
- set_input_tensor(input_tensor)#
See megatron.model.transformer.set_input_tensor()
- state_dict_for_save_checkpoint(prefix='', keep_vars=False)#
For easy load.